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The aim of this paper is twofold. First, we shall derive the Fermi-Dirac (FD) 
and Bose-Einstein (BE) distributions from the classical Maxwell-Boltzmann 
(MB) distribution by introducing into the classical system the consequences 
of quantum mechanical indistinguishability in a direct and simple manner. 
Next, we go through a brief introduction to feedback systems and see how 
the FD and BE systems may be viewed as classical systems with appropriate 
feedback. We shall see that the resemblance to feedback systems is more 
than formal and that a feedback mechanism does exist in systems obeying 
quantum statistical mechanics. 
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t .  T H E  M A X W E L L - B O L T Z H A N N  D I S T R I B U T I O N  

To facilitate later discussion, let us first see how the MB distribution is worked 
out for classical distinguishable particles. Figure 1 shows a small system A 
in contact with a reservoir B. The combined system A + B is isolated. Let us 
call the energies of the systems E~ and EB. Let s ) and Ds(EB) be the 
number of microstates available to A and B, respectively, when their energies 
are Ea and E~. Let A be in its ground state with energy EA ~ and let B have 
the remaining energy, which we denote by E~ ~ (EB ~ is not the ground-state 
energy of B, and in fact, it is the largest energy B can have.) I f  the 
ground state of  A is degenerate, let it be in one of them. The number of  
microstates available to the combined system A -5 B will be 

9A+~(EA ~ = i X g2B(G ~ 

as a function of the energy of A. Let us now promote A to a state of  energy er 
over the ground state. The number of states available to the combined system 
is given by 

O~+~(E2 + ~ )  = 1 • ;~.(E.O _ ~ )  

Iog[~?A+B(EA ~ + e~)] = 1og[OB(EB ~ - -  er)] 

Assuming e,. ~ E~ ~ we may expand as follows: 

where 

log[Y2~(E~ ~ - -  E~)] = log[DB(E~~ --  3% 

~B(EB ~ - -  e~) = s ~ • e -~'~ 

/3 --  ~[lOg~E~f28(E~)l eeo 

Postulating that all microstates of the combined, isolated system A + B 

Fig. 1. 

B 

System A in thermal contact with reservoir B. 
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are equally probable, we get the ratio of  the probability PA r of A being in 
r to the probability PA ~ of A being in the ground state as 

-PAr - -  ~A+B(EAO @ er) - -  E2B(E"~ - -  ~ )  - -  Ce-~% C = const. 
PA ~ ~A+B(EA ~ ~-~B(EB O) 

Now consider the problem of N distinguishable particles in a box. We 
want the probability P,. of a member being in a state r of  energy e~ above 
the ground state. We call this particle the system A and think of the others as 
constituting a reservoir B at temperature t3. Due to the distinguishability, 
we may keep track of particle A and the distinction between A and B is 
maintained. We may rightly expect that A will have the same behavior as 
when it was isolated since the only difference now is that it exchanges heat 
with the members of  B directly by collisions instead of via the conducting 
walls of the partition, which is an inconsequential distinction classically. 
So A will be in r with a probability Ce -~~ Now, we may consider any member  
of  the system to be A, and hence all members must behave alike. We then 
expect that the mean number of particles n(r) in r will be given by 

n(r) = NP~, oc e -B~ 

e-(~+Ber ) 

where ~ satisfies 

~ e -(~'+~r = N 

2. F E R H I - D I R A C  STATISTICS 

We want to use an analysis similar to the one in the last section to find 
the mean number of  fermions in state r in a box of N fermions. Let us first note 
a property of  fermion systems: 

n(r) = mean number of  fermions in r 

= (0 • probability of  nonoccupancy of r by any member) 

+ (1 • probability of  occupancy by any member) 

Pr 

Let us consider two boxes A and B separated by a conducting wall. Let 
us introduce a fermion called A in box A and the other N -  1 fermions in 
box B. By considering the effect of raising A over its ground state by E~ on 
the number  of  microstates available to B, we get for the combined system 
A 4 - B ,  

QA+B(Ea ~ + e~) = ~A+B(EA O) e -Bet 
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where/~ = ?[log ;2B(EB)]/6E8 once more. The fact that B is full of fermions 
may limit the accessible states of B to antisymmetrized ones, but/3 is still 
the energy derivative of the logarithm of accessible states. Further, the fact 
that A was a fermion was of no consequence. So we have the probability 
for a distinct fermion in box A, in thermal contact with a box full of fermions 
at temperature [3, to be Ce - ~ .  However, our problem is to find the energy 
distribution of fermions in a box. To find this, we shall use the method 
similar to the one used in the MB case, but with the indistinguishability of  
the fermions in mind. Our procedure is as follows: 

1. We have the behavior of  a fermion A in thermal contact with a box 
full of  N --  1 fermions B. 

2. We shall see what changes are to be expected when the partition 
between A and B is removed. We then modify 1 accordingly. 

3. We play the trick of saying that if we have the behavior of one 
fermion, we have the behavior of  them all, since any fermion may be treated 
as the one that was introduced from box A. 

Let us begin with step 2. The first effect of removing the partition is 
that we lose track of A. I f  the only effect of  indistinguishability is that we 
cannot follow the motion of  the particles individually, the.following consequences 
are expected: 

(a) We cannot give probabilities for specific fermions to be in any 
given state. This is not an experimentally verifiable quantity. 

(b) We can, however, speak of the probability per fermion to be in 
state r, Pv ~, in the following sense: If, on the average, there are n(r) fermions 
in r in a box of N fermions, 

P f  ~ n(r)/N 

This probability is not attributed to any particular fermion, but to the entire 
collection, equally and uniformly. It  may be experimentally verified by a 
measurement of n(r). 

(c) The fact that we cannot follow the motion of the fermion should not 
change its behavior when the partition is removed. I f  the isolated fermion 
(we use the term "isolated" to mean "when in box A" and not to mean ther- 
mally isolated) went to state r with a probability ce-~% it must be still doing so. 
Since all fermions are alike, we expect 

n ( r )  oc e - ~  
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So, indistinguishability,/f it merely means our inability to follow particles, 
leads to 

n ( r )  = e e  - ~ "  

However, indistinguishability in quantum mechanics has another important  
consequence for fermions: the exclusion principle. Whereas the isolated 
fermion in A could go to any state r of box A, it can go to a state r of  box B 
only if r is free. I f  p ,  is the probability that r is occupied by a member of  B, 

the probability for the extra fermion going to r is now 

P/" oc e-~'~(1 - -  p,) 

But p,, is n(r) for fermions. So 

p J  oc e-~"~[1 --  n(r)l 

Since all fermions have symmetric roles in that any one of them may be 
considered the one that was let in, they all follow the same distribution P / .  So 

n(r) = N P /  oc e-~[1  - -  n(r)] 

c 'e -e~ 1 
- -  c'  = const n(r) - -  1 + c ' e - ~  e~+~ + 1 ' 

To those readers who feel our arguments lack rigor, we offer the following 
lengthy, but hopefully more rigorous, proof. We shall count states, which is 
the surest method. Consider a system of N fermions. Say we want to describe 
a state in which there is one fermion in state i, one in j, etc. We first pretend 
that they are distinguishable and write a direct tensor product 

[ ~b) = I 1)~ 1 2 ) 5  "'" I N ) ~  

where the numerals label the particles and the subscripts label the states. 
To get an antisymmetric state for fermions, we operate on this with the 
antisymmetrization operator: 

AN = (Nl) -1/~ ~ ( - - l ) "  P 

where the sum includes all the N! permutations P, and p is the number of  
transpositions in P. So 

The subscript a is to remind us that the state vector is antisymmetric. AN 
also has the following interesting property. I f  we formed an antisymmetric 
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state I ~b)x with x fermions,  and another  ] ~b)~ with y fermions,  the state for  
the combined system is 

A,+~ [4 ' ) ,  14')~ ----14+o 

I f  a one-particle state r had  been occupied both  in I ~b)~ and  I ~b)~, then 

A.+. i ~) .  I ~)~ =- 0 

which is the Pauli principle at  work. 
Let  us now return to our  problem.  Consider  a system B made  of  

N -  1 fermions forming a reservoir  at  tempera ture  /~. This implies 
/3 = e[log s where Y28(EB) is the number  of  states that  can be 
fo rmed  by the N -  1 fermions at  the given energy, with the exclusion 
principle applied among  the N - -  1 fermions. Consider now the introduct ion 
of  any distinguishable m e m b e r  A, say a boson.  The energy of  A q- B is con- 
stant. I f  A goes to a state r, with energy er above the ground state, given 
by i ~bAr), the states available to the N -  1 fermions goes as s oc e-~',. 
I f  one such (N --  1)-fermion state is called I ~b}-l), the state of  the combined 
system is I ~b) = ] ~b,:) [ ~v-1) ,  and there are Y2~ such states in this situation, 
with A in r. However ,  if A were a fermion,  we must  proper ly  ant isymmetr ize  
and get for  the combined system 

However ,  all states fo rmed  using a [ ~byv_l) with a particle f rom B in r will be 
nullified by A s  when combined  with [ ~bA~ ). If, out  o f  the ~ states, .Q:  
had  a particle of  B in r, the number  of  allowed states goes as 

oc e -~* • [1 - -  (g2:/f2,)l 

But, if, out  o f  ~2~. states, f 2 :  had  a particle in r, X2:/~2~ is the probabi l i ty  
that  r was occupied in B. So the number  o f  allowed states goes as 

oc e - ~ ( 1  - -p , . )  oc e - ~ [ 1  - -  n(r)] 

Assuming all proper ly  ant isymmetr ized states are equally probable ,  the p roba-  
bility for  the fermion going into r goes as 

PF ~ oc e - ~ [ 1  --  n(r)] 

Since any fermion m a y  be called the newly introduced fermion,  the above  
calculation is true for  all. Therefore  

n(r) = NPfl" oc e - ~ [ 1  - -  n(r)] 

n(r) = c e - ~ / 1  + ce - ~  = 1/(e ~+~ + 1), c = e -~ = const 
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The reader must note how n(r) depends on itself in a self-destructive manner. 
This is the feedback effect that we will discuss later. 

Our analysis would be incomplete if we did not point out and justify an 
approximation we have made. We said 

g 2 ~ / ~  = p,. = n(r) 

where ~2 r is the number of  states available to B when A has an energy Er 
over the ground state EA ~ and B has energy e~ below its maximum; ~ is 
the number of  these states with r occupied; pr is the probability that r is 
occupied; and n(r) is the mean number of  particles of  B in r. This approxi- 
mation is not strictly correct. 

The values for n(r) and p~ that we have calculated are valid at a particular 
energy of B, EB ~ --  E,. At another energy E~ of A, B will have an energy 
EB ~ --  e~ and number of  states f2, ,  and of these, f2~ ~ will have r occupied, 
and the ratio of  Os ~ to X2~ will be different. The real mean of the number  of  
particles in r must be calculated by taking the weighted average of  these 
means. However, if it is true that 

n ( r )may  be calculated at any energy. In other words, we must show that the 
mean occupancy of a state in a reservoir does not change when its energy is 
changed in the order of  a single particle energy. We shall do so shortly, 
but first point out that it is not too obvious. In general, the effect of  energy 
changes in the order of  E, are not ignorable. After all, the canonical distri- 
bution ce-~'* was derived by considering the change in the number of  reservoir 
states when its energy was changed by E,.. Further, since the number of  states 
is decided by the number of  possible distinguishable arrangements of  the 
particles among the states, this cannot change without a change in the n(r). 
This is true, but we shall see that the change in the n(r) is utterly negligible. 

Our proof  will be on hindsight. Our calculation assuming constancy of 
n(r) gave 

n(r) = 1/(e ~+~'r + 1) 

and this is strictly a function of/3 and will change if 13 does. But since B is a 
reservoir, its/3 will not change by any sizable amount  as its energy is changed 
by E,.. We shall use this same idea when we come to the problem of bosons. 

3. T H E  B O S E - E I N S T E I N  D I S T R I B U T I O N  

We shall derive the B E  distribution in a manner that may at first sight 
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seem different from the way we derived the FD distribution. We shall later 
on show the equivalence of the two methods. 

As a prelude, let us state an important and rather well-known property 
of  bosons, which we have proved in the appendix for completeness. The 
property follows from the requirement that bosons be described by a sym- 
metric wave function, and is the following: I f  P~: is the probability that an 
isolated boson in state i goes to state f ,  this is enhanced by a factor (n: + 1) 
if there are already n- bosons inf .  We shall refer to this as the antiexclusion 
principle. 

An analogous principle exists for fermions and runs as follows: I f  
P~: is the probability that an isolated fermion goes from state i to state f ,  
this is modified by a factor (1 - -  n:) if there are already n~ fermions in f .  
This is of course Pauli's principle, restated to resemble the antiexclusion 
principle. These are properties peculiar to quantum systems and follow from 
the fact that identical particles in quantum mechanics are described en masse 
by a single, symmetrized or antisymmetrized wave function, which tends to 
correlate their behavior. This intrinsic property must be incorporated in any 
many-body problem. We shall do so explicitly for bosons and point out how 
we have already done so in our fermion calculations. 

At the risk of  sounding repetitious, but with the hope of  adding to the 
clarity we shall begin at a basic level, and proceed to find the mean number 
n(r) of bosons in a state r, in a box of N bosons. Defining once more the 
probability per boson to be in r as 

PB ~ = n(r)/N 

our problem reduces to finding this. 
Consider an isolated boson A in box A, in contact with a box B containing 

N --  1 bosons. As A goes to a state r of  energy Er over the ground state, the 
number of accessible states of  B falls as Ce-~% where 17 is the temperature of  B. 
The state of  A is described by a state vector I ~bAr), while B is described by 
I ~b~v_l)i, which is a symmetrized ( N -  1)-particle state vector indicating 
that B is in some state i while A is in r. The combined system is given by 

The number of these states as a function of c~ goes as ~e -p~r. 
The probability that A is in r, PA", is the sum of the probabilities for the 

different ways in which this can happen, 

?:=Z?SB, 
i 

where P~,~ is the probability that A goes to r when B is in i. The sum is 
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over all states i that B can be in, when A has energy er over the ground state. 
Since even quantum mechanics does not correlate the motion of A with B 
when A is isolated and distinguishable, and since quantum mechanics does not 
intrinsically favor any one particle state r of  A, the terms in the sum are all 
equal. So we get 

P J  = number of terms in the sum oc e -~r  

We now want to let A into box B and ask for the probability that the extra 
boson is in a state r of box B. At this point, we may raise a point that may well 
have been brought up when doing the fermion calculation also. Can we speak 
of the probability of  the extra boson being in r, when it is not distinguishable 
from the rest ? Yes, in the following sense. I r A  were distinguishable, a typical 
state would be ] ~b) = I 4~A ~) ] 4~Yv-1)i, which tells us that the extra particle A 
is in r. I f  A were indistinguishable, we would symmetrize this with the 
symmetrizing operator S to get 

Now, I ~b~v_l)i is an ( N -  1)-particle state that tells us where the N -  1 
particles are, without naming them, of  course. ] 4J)s is an N-particle state 
that tells what the N particles are doing. A comparison of the two will tell us 
what the "extra"  particle is doing: it is in r. We call such a state as one with 
the extra particle in r. 

We then have the probability for this to be 

= ZP;,B  
i 

In summing, we no longer assume P~,B~ is independent of  i. The antiexclusion 
principle tells us that if there are two states i a n d j  of B, i with no particles in 
r and j with n I particles in r, 

P~.Bj = (hi" 4- 1) P~.si 

We therefore give each term a weight (nJ + 1) so that 

PA ~ oc ~ (nI + 1) 
J 

The sum ofn  I q- 1 over the states of  B is clearly equal to the mean o f ( n l  q- 1) 
times the number  of  terms in the sum. Since the number of  terms goes as 
OC e-~r~ 

PA ~ oC e-~'~[1 q- n(r)] 

82214ii-5 
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where we have called the mean number o f n l  as n(r). Since any boson may be 
called the newcomer, they all obey the same statistics, and so 

n(r) = N P J  = ce-B~[l + n(r)]; n(r)=- 1/(e ~+~'r --  1) 

A number of  points need to be discussed. We first note that n(r) is the mean 
number calculated at one energy of B, i.e., EB ~ - -  Er. But as in the fermion 
case, this is alright, since the occupancy numbers of  the reservoir do not 
change due to energy changes like E,.. Second, the reader may feel that in 
assigning different weights like (n l  -k 1) to different microstates of  the extra 
particle contradicts the statistical postulate of equal probabilities. This is not 
so. We are weighting here the probabilities for a single member to go to a 
state when the others are assumed to be in some configuration, while the 
postulate refers to the entire system. Is it possible for the members of a system 
to show preference for certain one-particle microstates while the entire 
system is equally likely to be in any of its system microstates ? Yes. The 
classical canonical distribution is an example in which individual members 
go for a state r with probability ~e-~% while the system as a whole goes to all 
its states with equal probability. 

Lastly, one may ask, "How come we did no such weighting for the 
fermions ? Did we not give equal status to all allowable states ?" The answer 
is that we did perform a rather drastic weighting in calling certain states 
"allowed" and the others "disallowed." Of  the total of  g2r states, we threw 
away ~Q~ and gave the others equal weight. The way to interpret this is to say 
that we gave the states j in which r was occupied a weight of 1 - -  n7 = 0 
since nJ  -~ 1, and those with r free a weight of  1 - -  n~ ~ ----- 1 since nj ~ = 0. 
For fermions, the weighting process is a binary "yes" or "no"  process. 

To the reader who feels that we could have saved time and space if we 
had done the fermion calculations with weights the first time itself, we offer 
the following explanation. This was done on purpose. We wanted to emphasize 
in this paper three main ideas, and we wanted to do this step by step. In 
the first section, we wanted to point out the generality of  the canonical distri- 
bution, in that it describes the probabilities for an isolated fermion, boson or 
boltzon, to be in a state r when in thermal contact with a reservoir made of 
like or unlike particles. In the next section, we wanted to show how this 
knowledge, when combined with the knowledge of the effect of  removing 
the partition, led to the behavior of  particles when sharing the same space as 
other members of  the same species, i.e., to the occupancy numbers. I t  was 
easy to do this for fermions, since the only effect of removing the partition 
was to exclude certain states. Then we wanted to bring in the concept of 
weights, which was more general, through the BE calculation. 

In the next section, we shall see that the quantum systems may be derived 
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from classical systems by assuming suitable feedbacks. Once more we shall 
see that the idea of feedback had been unwittingly used by us in our deriva- 
tions. To the reader who asks why we did not use feedback ideas right away, 
we offer the same explanation as above. 

4. T H E  F E E D B A C K  M O D E L  

Let us first get acquainted with some basic concepts in feedback systems. 
Consider an amplifier of gain A, as shown in Fig. 2(a). The output O is 
related to the input I by 

0 -~ A I  

Imagine that a fraction B (called the feedback factor) of the output is fed 
back to the input, so as to oppose it, via the mixer M. Such a system is called 
a negative feedback (NFB) system, and is shown in Fig. 2(b). The negative 
sign at the mixer indicates NFB. What is the effective gain of  the amplifier ? 
The output O depends on the input, which depends on the output due to the 
feedback. We can, however, break this chain by noting that always 

O = A • (what goes into the amplifier) 

= A x ( I -  BO) 

O = [A/(1 4- A B ) ] I  = A ' I  

A '  is called the effective gain. Negative feedback systems are very stable in 
the effective A '  as A varies. This is because the feedback opposes the input less 
if the output tries to fall and opposes the input more when the output tries 
to rise. 

Fig. 2. 

1 

(a) Open-loop system. (b) Negative feedback system. (c) Positive feedback 
system. 
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We may also consider a system where the feedback aids the input. This is 
called a positive feedback (PFB) system and is shown in Fig. 2(c). The effec- 
tive gain here is 

A '  = A/(1 - -  A B )  

A' is very unstable since the feedback aids the output via the input when it 
tries to go up, and accelerates its decline. 

We urge the reader, if has not already done so, to note the similarity 
between the factors 

A,  A/(1 4- AB) ,  A/(1 - -  A B )  

describing open-loop, NFB, and PFB systems and the factors 

ce-B~r; ce-BCr/(1 + ce-B~r), ce-~C~/(1 _ ce-~r)  

describing MB, FD, and BE systems, respectively. This hints at the possibility 
of  considering FD systems as MB systems with NFB and BE systems as MB 
systems with PFB in some sense. We shall see how this can be done. 

The classical system is described by the formula 

n ( r )  = c e  -~'~ 

where n(r) is the mean number of particles in a one-particle quantum state r. 
If  we now let r stand for an energy (not a state but all states of energy er), 
and if the degeneracy of r is denoted by g~, the number N~ in the level r is 

Nr = g~ce -~'~ = g~n(r) 

We represent such a system schematically by Fig. 3(a). It is supposed to repre- 

Fig, 3. 

(b) 

(c) 

(a) Maxwell-Boltzmann system (schematic). (b) Fermi-Dirac system (schematic). 
(c) Bose-Einstein system (schematic). 
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sent the following: The probability for a particle to be in r is decided by the 
energy and degeneracy of r. This is independent of  what the other particles 
are doing, particularly on how many are already in r. This is implied in the 
absence of the feedback loop. The factor ce - ~  comes from a counting of 
possible states for the reservoir. This depends only on the temperature of  
the reservoir and not on its composition. 

Say we apply to this system a NFB with the feedback factor equal to 
uniy. Such system is represented in Fig. 3(b). I t  follows that 

N~ = (g~ - -  N~.) ce -Br = g~.[1 - -  (N,./g~.)] ce -~"  = g~[1 - -  n(r)] ce - ~  

N~/gr = n(r) - g r c e - ~ r [ 1  - -  n(r)] 

n(r) = ce-S~"/(1 + ce - ~ )  = 1/(e~+~' + 1) 

We have shown here explicitly the steps so that the similarities with our 
earlier derivation are transparent. The reader should see for himself the 
physical interpretation of the steps. We note that, being negative feedback 
systems, the fermion systems have very stable occupancy numbers as the 
temperature varies. This must be familiar to those who deal with fermion 
gases and see how the populations of  the levels change with temperature 
with great reluctance. 

Consider next the problem of applying unity PFB to a MB system, as in 
Fig. 3(c). The following are the implications: (1) The probability for a 
member  to be in r is enhanced by the presence of other members in r. (2) The 
mean occupancy number of  energy r depends on itself in a self-aiding manner. 

These are characteristic of boson systems. Let us see how it works out. 
We have, from Fig. 3(c), 

N~ = (g,. @ N , )  ce - ~  = g~ce-B~"[1 + (Nr/g,)] = g , c e - ~ [ 1  4- n(r)] 

N,~/gr = n(r) = ce-e~[1 q- n(r)] 

n(r) = ce-Br -B~r + 1) = 1/(e ~+~r --  1) 

Boson populations can get very unstable as/3 changes (condensation). 

5. C O N C L U S I O N S  

We sum up our arguments as follows. Classical systems consist of  dis- 
tinguishable particles, which may be described individually. Their motions 
are not therefore correlated. The probability for a particle going to a given 
state is not affected by the occupancy of that state. Such a system obeys MB 
statistics and is represented by an open-loop system. 
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Quantum systems consist of  indistinguishable particles which have to be 
described en masse by properly symmetrized or antisymmetized state vectors. 
Their motions are therefore correlated even though they are assumed to be 
noninteracting (in the sense that the interaction Hamiltonian is utterly 
negligible). There are two kinds of correlations. Fermions are negatively 
correlated, in the sense that the presence of a particle in a state r prohibits 
the entry of  another particle. The bosons are positively correlated in the sense 
that the presence of bosons in a state makes the arrival of other bosons more 
likely. This is a feature intrinsic in the quantum mechanics. Fermions are 
described as NFB systems as compared to uncorrelated MB systems, while 
bosons are described as PFB systems as compared to MB systems. In both 
cases, the feedback factor is unity. 

Of  course, both FD and BE systems may be described as open-loop 
systems, as in Fig. 4, without any mention of feedback or correlation. But 
we like the think of them as uncorrelated systems with appropriate feedback 
for the following reasons: 

1. The canonical distribution is a very general one (ce-~r). I t  describes 
the behavior of  isolated fermions, bosons, or boltzons when they interact 
with a reservoir through a partition. However, when the isolation is ended 
by the removal of  the partition, the motion of the particle in general gets 
correlated with those in the reservoir. The correlation exists only if the reser- 
voir has the same kind of particles as the isolated one. The different kinds of  
correlation and the strengths of correlation (magnitude of the feedback 
factor) are transparently contained in the feedback loop. 

2. In fact, there is a correlation or feedback. Particles seem to be 
aware of  what the others are doing. Fermions seem to obey traffic laws. 
Bosons seek the company of other bosons. While all combinatorial cal- 
culations for the distributions take explicit note of  the tendency of fermions 
to avoid each other by counting states in harmony with the exclusion prin- 
ciple, they do not explicitly incorporate the tendency of bosons to stick 
together. We feel our approach treats fermions and bosons in a symmetric 
manner. 

3. We feel that the macroscopic equivalents of  the exclusion and 
antiexclusion principles are provided by the statements that fermions are 

Fig. 4. Open-Loop model of quantum systems. 
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NFB systems with unity feedback, and bosons are PFB systems with unity 
feedback. 

4. We sincerely feel that the feedback approach will lead beyond the 
results derived in this paper if an attempt is made by those better versed 
than the present author in feedback systems, statistical mechanics, or both. 
The paper is written with that hope. 

A P P E N D I X  

We plan to show here that if Pi~ is the probability that an isolated boson 
goes to state I f )  from state l i) ,  this is enhanced to (nf § 1)Pie if there are 
already nj bosons present in l f ) .  Consider three particles in states I 1), L 2), 
and ] 3) as shown in Fig. 5. We want to investigate the probability of their 
going to state l f ) .  

Case 1. Assume they are distinguishable. We christen them A, B, and C. 
The initial state is given by the tensor product 

I ~i )  = ] 1)~ 12)B [ 3 ) c  

where the numerical labels are for the states and the letters for the particles. 
The final state is 

i ~bl) = l f ) A  [ f )B  I f ) c  

and the amplitude for the process i - ~ f i s  

<~b~ [ ~bi) = a ( f  l , < f  l c ( f  [ ] ] 1).4 [ 2)B I 2)c 

= ( f [  1)a<f] 2 )~ ( f  ] 3)c = c~/?y 

where ~ = <f l  1)A, etc. Clearly, <f]  1)A = <fl  1)~, etc., since the ampli- 
tude to go from ] i )  to I f )  is a function of I i )  and I f )  and not the particle. 

The probability for the above case of distinguishable particles is 

Pit = ~2fi27~ 

A B c 

Fig. 5. Arrival of three bosons to a state f. 
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Case 2. Let the particles be indistinguishable bosons. We merely 
know that in the initial state, there are three bosons, one each in I 1}, [ 2}, 
and I 3}, and the legitimate symmetrized state is given by 

i~ I r = (3!)-x/2(1 1}A [2}B [ 3}c q- [2}a [ 1}B 1 3}c q- "") 

The final state [ ~b,} = t f } a  I f } e  [ f }c  is already symmetrized. The amplitude 
to go from i to f is 

(r  I ~bi} = (3[)-l/z((f i 1}a(f  I 2)B(f  [ 3}c q- ( f l  2}a ( f  I 1} . ( f [  3)c q- "") 

= (3 !)-~/~ 3!  ~Sr = (3 !)2/2 ~Sr 

Labeling the probability for the bosons and the distinguishable cases 
appropriately, we have 

P , / B )  = 3t o,~52y ~ = 3! P , / D )  

This means that if there are three bosons in states ] 1}, ] 2}, and I 3}, the prob'  
ability for them to go to I f}  is 3! times as much as it would have been if 
they had been distinguishable. For N particles, it follows that 

P~V(B) = NZ pN(D) 

and similarly for N + 1 particles, 

pN+I(B) = (N + 1)! PN+I(D) 

where we have dropped the subscript/f. But 

PN+I(B) = PN(B) • [probability for the arrival of the (N + l)th boson 

given N are already there] 

= PX(B) • PN+l(B)arr 

Similarly for the distinguishable case, 

pN+~(D) = pN(D) • PN+~(D)arr 

so that 

PN+~(B) = PX(B) • PN+~(B)arr = (N + 1)! pN+~(D) 
$ $ 

pN(D) • N! • PN+~(B)ar. = (N + 1)! • PN(D) • Pi+l(n)arr 

Therefore, 

P~+~(B)arr = (N + 1) P'V+a(D)arr 
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The arrival of the (N + 1)th particle, if we are dealing with bosons, is 
(N + 1) times as probable as the arrival of the (N + 1)th particle if we were 
dealing with distinguishable particles. Noting that the first particle came as 
an isolated and distinguishable particle, we have the result 

P:V+~(B)ar r = (N + 1) PZ(B)arr 

This may be restated in a manner that will be more appropriate to 
our discussions : I f  there are two "closely lying" states r and s in the sense 
that an isolated boson would go to either with equal probabilities, the proba- 
bility for it to go to r will be (n~ + 1) times the probability for it to go to s 
if r has already n~ particles in it and s is free. These results may be proved 
very easily using the raising and lowering operators of  second quantized 
theory. 
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